5-cell |
Cantellated 5-cell |
Cantitruncated 5-cell |
Orthogonal projections in A4 Coxeter plane |
---|
In four-dimensional geometry, a cantellated 5-cell is a convex uniform polychoron, being a cantellation (a 2nd order truncation) of the regular 5-cell.
There are 2 unique degrees of runcinations of the 5-cell including with permutations truncations.
|
Cantellated 5-cell | ||
---|---|---|
Schlegel diagram with octahedral cells shown |
||
Type | Uniform polychoron | |
Schläfli symbol | t0,2{3,3,3} | |
Coxeter-Dynkin diagram | ||
Cells | 20 | 5 (3.4.3.4) 5 (3.3.3.3) 10 (3.4.4) |
Faces | 80 | 50{3} 30{4} |
Edges | 90 | |
Vertices | 30 | |
Vertex figure | Irreg. triangular prism |
|
Symmetry group | A4, [3,3,3], order 120 | |
Properties | convex, isogonal | |
Uniform index | 3 4 5 |
The cantellated 5-cell is a uniform polychoron. It has 30 vertices, 90 edges, 80 faces, and 20 cells. The cells are 5 cuboctahedra, 5 octahedra, and 10 triangular prisms. Each vertex is surrounded by 2 cuboctahedra, 2 triangular prisms, and 1 octahedron; the vertex figure is a nonuniform triangular prism.
Ak Coxeter plane |
A4 | A3 | A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Wireframe |
Ten triangular prisms colored green |
Five octahedra colored blue |
The Cartesian coordinates of the vertices of the origin-centered cantellated 5-cell having edge length 2 are:
|
|
The vertices of the cantellated 5-cell can be most simply positioned in 5-space as permutations of:
This construction is from the positive orthant facet of the cantellated 5-orthoplex.
Cantitruncated 5-cell | ||
---|---|---|
Schlegel diagram with Truncated tetrahedral cells shown |
||
Type | Uniform polychoron | |
Schläfli symbol | t0,1,2{3,3,3} | |
Coxeter-Dynkin diagram | ||
Cells | 20 | 5 (4.6.6) 10 (3.4.4) 5 (3.6.6) |
Faces | 80 | 20{3} 30{4} 30{6} |
Edges | 120 | |
Vertices | 60 | |
Vertex figure | sphenoid |
|
Symmetry group | A4, [3,3,3], order 120 | |
Properties | convex, isogonal | |
Uniform index | 6 7 8 |
The cantitruncated 5-cell is a uniform polychoron. It is composed of 60 vertices, 120 edges, 80 faces, and 20 cells. The cells are: 5 truncated octahedra, 10 triangular prisms, and 5 truncated tetrahedra. Each vertex is surrounded by 2 truncated octahedra, one triangular prism, and one truncated tetrahedron.
Ak Coxeter plane |
A4 | A3 | A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Stereographic projection with its 10 triangular prisms. |
The Cartesian coordinates of an origin-centered cantitruncated 5-cell having edge length 2 are:
|
|
These vertices can be more simply constructed on a hyperplane in 5-space, as the permutations of:
This construction is from the positive orthant facet of the cantitruncated 5-orthoplex.
These polytopes are art of a set of 9 uniform polychora constructed from the [3,3,3] Coxeter group.
Name | 5-cell | truncated 5-cell | rectified 5-cell | cantellated 5-cell | bitruncated 5-cell | cantitruncated 5-cell | runcinated 5-cell | runcitruncated 5-cell | omnitruncated 5-cell |
---|---|---|---|---|---|---|---|---|---|
Schläfli symbol |
{3,3,3} | t0,1{3,3,3} | t1{3,3,3} | t0,2{3,3,3} | t1,2{3,3,3} | t0,1,2{3,3,3} | t0,3{3,3,3} | t0,1,3{3,3,3} | t0,1,2,3{3,3,3} |
Coxeter-Dynkin diagram |
|||||||||
Schlegel diagram |
|||||||||
A4 Coxeter plane Graph |
|||||||||
A3 Coxeter plane Graph |
|||||||||
A2 Coxeter plane Graph |